Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Neumann Boundary Controllability for Second Order Hyperbolic Equations

Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in L(Ω) × (H1(Ω))′ and we derive estimates for the control time T .

متن کامل

Neumann Boundary Control of Hyperbolic Equations with Pointwise State Constraints

We consider optimal control problems for hyperbolic equations with controls in Neumann boundary conditions with pointwise constraints on the control and state functions. Focusing on the multidimensional wave equation with a nonlinear term, we derive new necessary optimality conditions in the form of a pointwise Pontryagin Maximum Principle for the state-constrained problem under consideration. ...

متن کامل

Space-time Finite Element Methods for Second-order Hyperbolic Equations*

Space-time finite element methods are presented to accurately solve elastodynamics problems that include sharp gradients due to propagating waves. The new methodology involves finite element discretization of the time domain as well as the usual finite element discretization of the spatial domain. Linear stabilizing mechanisms are included which do not degrade the accuracy of the space-time fin...

متن کامل

Sharp estimates for finite element approximations to elliptic problems with Neumann boundary data of low regularity

Consider a second order homogeneous elliptic problem with smooth coefficients, Au = 0, on a smooth domain, Ω, but with Neumann boundary data of low regularity. Interior maximum norm error estimates are given for C0 finite element approximations to this problem. When the Neumann data is not in L1(∂Ω), these local estimates are not of optimal order but are nevertheless shown to be sharp. A method...

متن کامل

Regularity for Quasilinear Second-Order Subelliptic Equations

In this paper, we study the regularity of solutions of the quasilinear equation where X = ( X , ; . . , X , , , ) is a system of real smooth vector fields, A i j , B E Cw(Q x R m + l ) . Assume that X satisfies the Hormander condition and ( A , , ( x , z , c ) ) is positive definite. We prove that if u E S2@(Q) (see Section 2) is a solution of the above equation, then u E Cw(Q). Introduction In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Evolution Equations and Control Theory

سال: 2016

ISSN: 2163-2480

DOI: 10.3934/eect.2016016